Keyno­te

Un­der­stan­ding So­ci­al Struc­tu­re and Be­ha­vi­or through Re­s­pon­si­ble Mi­xed-Me­thods Re­se­arch: Bias De­tec­tion, Theo­ry Va­li­da­ti­on, and Data Go­ver­nan­ce

Raum HZ1

Uhr­zeit 14:30 - 15:30

Jana Dies­ner

School of In­for­ma­ti­on Sci­en­ces at the Uni­ver­si­ty of Il­li­nois at Ur­ba­na-Cham­pai­gn, USA

Working with re­lia­ble data, metrics, and me­thods, as well as valid theo­ries, is es­sen­ti­al for ad­van­cing the com­pu­ta­tio­nal hu­ma­nities and so­ci­al sci­en­ces. In this talk, I pre­sent our re­se­arch on the fol­lo­wing ques­ti­on:

1.) How do li­mi­ta­ti­ons re­la­ted to the pro­ven­an­ce and qua­li­ty of di­gi­tal so­ci­al data im­pact re­se­arch re­sults? I pre­sent on the im­pact of com­mon­ly used tech­ni­ques for name di­sam­bi­gua­ti­on on the pro­per­ties and dy­na­mics of so­ci­al net­works, high­light mea­su­re­ment-in­du­ced bia­ses in metrics and theo­ries, and ad­dress means for miti­ga­ting these li­mi­ta­ti­ons.

2.) How can we com­bi­ne me­thods from na­tu­ral lan­gua­ge pro­ces­sing and net­work ana­ly­sis to joint­ly con­sider the con­tent and struc­tu­re of so­ci­al re­la­ti­ons? I pro­vi­de an ex­amp­le where we ap­p­lied do­main-ad­jus­ted text mi­ning to en­han­ce so­ci­al net­works to va­li­da­te a clas­sic so­ci­al sci­ence theo­ry in a con­tem­pora­ry set­ting.

3.) How can we as­sess the im­pact of in­for­ma­ti­on and sci­ence on peop­le and so­cie­ty bey­ond using bi­blio­metric me­thods? I pre­sent our work on pre­dic­ting the im­pact of media on in­di­vi­du­al be­ha­vi­or, co­gni­ti­on, and emo­ti­ons, and mea­su­ring the long-term im­pact of sci­en­ti­fic re­se­arch on so­cie­ty.

4.) When working with hu­man-cen­te­red and on­line data, how can we com­ply with data go­ver­nan­ce re­gu­la­ti­ons while still do in­no­va­ti­ve work? I dis­cuss chal­len­ges and op­por­tu­nities for using di­gi­tal so­ci­al data in re­s­pon­si­ble and prac­tical ways.

Over­all, the work pre­sen­ted in this talk cont­ri­bu­tes to ma­king sense of qua­li­ta­ti­ve, dis­tri­bu­ted, and mul­ti-mo­dal data in a scalable way; and ad­van­cing the trans­pa­ren­cy, re­s­pon­si­bi­li­ty, and ethics of com­pu­ting and tech­no­lo­gy as ap­p­lied to try­ing to bet­ter un­der­stand so­cie­ty.

Die Keyno­te wird in Deutsch ge­hal­ten.

Kurz­bio­gra­fie

Jana Dies­ner is an As­so­cia­te Pro­fes­sor at the School of In­for­ma­ti­on Sci­en­ces at the Uni­ver­si­ty of Il­li­nois at Ur­ba­na-Cham­pai­gn. Dies­ner's re­se­arch in so­ci­al com­pu­ting and hu­man-cen­te­red data sci­ence com­bi­nes me­thods from na­tu­ral lan­gua­ge pro­ces­sing, so­ci­al net­work ana­ly­sis, and ma­chi­ne learning with theo­ries from the so­ci­al sci­en­ces, hu­ma­nities, and lin­gu­is­tics to ad­van­ce know­ledge and dis­co­very about in­ter­ac­tion-ba­sed and in­for­ma­ti­on-ba­sed sys­tems. Her lab is cur­rent­ly working on pro­jects re­la­ted to:

1.) bia­ses in data, tech­no­lo­gy and human de­ci­si­on ma­king,

2.) data go­ver­nan­ce,

3.) va­li­da­ting so­ci­al sci­ence theo­ries in con­tem­pora­ry set­tings,

4.) im­pact as­sess­ment,

5.) cri­sis in­for­ma­tics.

Re­cent re­co­gni­ti­on for her re­se­arch ex­per­ti­se in­clu­des a Li­no­wes Fel­lowship from the Cline Cen­ter for Ad­van­ced So­ci­al Re­se­arch at Il­li­nois (2018), a R.C. Evans Data Ana­ly­tics Fel­lowship from the De­loit­te Foun­da­ti­on Cen­ter for Busi­ness Ana­ly­tics at UIUC (2018), and an ap­point­ment as the CIO Scho­lar for In­for­ma­ti­on Re­se­arch & Tech­no­lo­gy at Il­li­nois (2018).

Dies­ner has pu­blis­hed more than 55 re­fer­red ar­ti­cles. She got her PhD (2012) from the School of Com­pu­ter Sci­ence at Car­ne­gie Mel­lon Uni­ver­si­ty.

Diese Vi­sua­li­sie­rung ba­siert auf der Ein­rei­chung Un­der­stan­ding So­ci­al Struc­tu­re and Be­ha­vi­or through Re­s­pon­si­ble Mi­xed-Me­thods Re­se­arch: Bias De­tec­tion, Theo­ry Va­li­da­ti­on, and Data Go­ver­nan­ce und setzt sich aus Wer­ten für Flesch-Rea­ding-Ea­se (23) und Sen­ti­men­t­ana­ly­se (53) zu­sam­men.